Enzymes

Jason Ryan, MD, MPH

Enzymatic Reactions

$S + E \rightleftharpoons ES \rightleftharpoons E + P$

Enzymatic Reactions

$S + E \rightleftharpoons ES \rightleftharpoons E + P$

Image courtesy of Wikipedia/<u>U+003F</u>

Michaelis-Menten Kinetics

- Adding S \rightarrow More P formation \rightarrow Faster V
- Eventually, reach Vmax

Michaelis-Menten Kinetics

- At Vmax, enzymes saturated (doing all they can)
- Only way to increase Vmax is to add enzyme

Enzyme Kinetics

$$V = \frac{V_m * [S]}{K_m + [S]}$$

Key Points:1. Km has same units as [S]2. At some point on graph, Km must equal [S]

$$V = \frac{V_{m} * [S]}{[S] + [S]} = \frac{V_{m} * [S]}{2 [S]} = \frac{V_{m}}{2}$$

When
$$V = V_m/2$$

[S] = K_m

- Small Km \rightarrow Vm reached at low concentration [S]
- Large Km \rightarrow Vm reached at high concentration [S]

- Small Km \rightarrow Substrate binds easily at low [S]
 - High affinity substrate for enzyme
- Large Km \rightarrow Low affinity substrate for enzyme

Key Points

- Km is characteristic of each substrate/enzyme
- Vm depends on amount of enzyme present
- Can determine Vm/Km from
 - Michaelis Menten plot V vs. [S]
 - Lineweaver Burk plot 1/V vs. 1/[S]

Lineweaver Burk Plot

$$V = \frac{V_m^* [S]}{K_m + [S]}$$

$$\frac{1}{V} = \frac{Km + [S]}{Vm [S]} = \frac{Km}{Vm [S]} + \frac{[S]}{Vm [S]}$$
$$\frac{1}{V} = \frac{1}{V} + \frac{1}{[S]} + \frac{1}{Vm}$$

Lineweaver Burk Plot

Enzyme Inhibitors

Jason Ryan, MD, MPH

Enzyme Inhibitors

- Many drugs work through enzyme inhibition
- Two types of inhibitors:
 - Competitive
 - Non-competitive

Enzymatic Reactions

$S + E \rightleftharpoons ES \rightleftharpoons E + P$

Enzyme Inhibitors

<u>Competitive</u> Competes for same site as S Lots of S will overcome this

<u>Non-competitive</u> Binds different site S Changes S binding site S cannot overcome this Effect similar to no enzyme

Competitive Inhibitor

Competitive Inhibitor

Inhibitor

Inhibitors

Competitive

- Similar to S
- Bind active site
- Overcome by more S
- Vm unchanged
- Km higher

Non-competitive

- Different from S
- Bind different site
- Cannot be overcome
- Vm decreased
- Km unchanged

Dose-Response

Jason Ryan, MD, MPH

Efficacy

- Maximal effect a drug can produce
 - Morphine is more efficacious than aspirin for pain control

Potency

- Amount of drug needed for given effect
 - Drug A produces effect with 5mg
 - Drug B produces same effect with 50mg
 - Drug A is 10x more potent than drug B
- More potent not necessarily superior
- Low potency only bad if dose is so high it's hard to administer

Pain Control

Boards&Beyond.

Dose (mg)

Dose-Response

- For many drugs we can measure response as we increase the dose
- Can plot dose (x-axis) versus response (y-axis)

Dose-Response

- Graded or quantal responses
- Graded response
 - Example: Blood pressure
 - Can measure "graded" effect with different dosages
- Quantal response
 - Drug produces therapeutic effect: Yes/No
 - Example: Number of patients achieving SBP<140mmHg
 - Can measure "quantal" effect by % patients responding to dose

Graded Dose Response Curve

Graded Dose Response Curve \downarrow EC50 = \uparrow Potency E_{max} Effect E₅₀ 1 10 100 Log [Dose] Boards&Beyond

Graded Dose Response Curve

Log [Dose]

Competitive Antagonists

Log [Dose]

Non-competitive Antagonists

Boards&Beyond.

Spare Receptors

- "Spare" receptors: Activate when others blocked
- Maximal response can occur even in setting of blocked receptors
- Experimentally, spare receptors demonstrated by using irreversible antagonists
 - Prevents binding of agonist to portion of receptors
 - High concentrations of agonist still produce max response

Log [Dose]

Source: Basic and Clinical Pharmacology, Katzung

Partial Agonists

- Similar structure to agonists
- Produce less than full effect

Partial Agonist

Single Dose Agonist With Increasing Partial Agonist

Partial Agonist

Single Dose Agonist With Increasing Partial Agonist

Partial Agonists

- Pindolol/Acebutolol
 - Old antihypertensives
 - Activate beta receptors but to less degree that norepinephrine
 - "Intrinsic sympathomimetic activity" (IMA)
 - Lower BP in hypertensive patients
 - Can cause angina through vasoconstriction
- Buprenorphine
 - Partial mu-opioid agonist
 - Treatment of opioid dependence
- Clomiphene
 - Partial agonist of estrogen receptors hypothalamus
 - Blocks (-) feedback; 1LH/FSH
 - Infertility/PCOS

Quantal Dose Response Curve

Therapeutic Index

Measurement of drug safety

Therapeutic Index = LD_{50} ED₅₀

Therapeutic Window

Log [Dose]

Low TI Drugs

- Often require measurement of levels to avoid toxicity
- Warfarin
- Digoxin
- Lithium
- Theophylline

Drug Elimination

Jason Ryan, MD, MPH

Elimination

Boards&Beyond

Zero Order Elimination

- Constant rate of elimination per time
- No dependence/variation with [drug]
- No constant half life

Rate = $5 * [Drug]^0$

5units

5units

5units

First Order Elimination

- Rate varies with concentration of drug
- Percent (%) change with time is constant (half life)
- Most drugs 1st order elimination

Zero Order Elimination

Time (hr)	Amount (g)	Change (g)	%
0	20		100
1	15	5	75%
2	10	5	50%
3	5	5	25%

First Order Elimination

Time (hr)	Amount (g)	Change (g)	%
0	10		100
1	5	5	50
2	2.5	2.5	25
3	1.25	1.25	12.5

Special Types of Elimination

- Flow-dependent
- Capacity-dependent

Flow-dependent Elimination

- Some drugs metabolized so quickly that blood flow to organ (usually liver) determines elimination
- These drugs are "high extraction" drugs
- Example: Morphine
- Patients with heart failure will have \downarrow clearance

Capacity-dependent Elimination

- Follows Michaelis-Menten kinetics
- Rate of elimination = $V_{max} \cdot C / (K_m + C)$
- "Saturatable" \rightarrow High C leads to V_{max} rate
- When this happens zero order elimination occurs
- Three classic drugs:
 - Ethanol
 - Phenytoin
 - Aspirin

Urine pH

• Many drugs are weak acids or weak bases

Weak Acid: $HA <-> A^- + H^+$

Weak Base: BOH $<-> B^+ + OH^-$

Urine pH

- Drugs filtered by glomerulus
- Ionized form gets "trapped" in urine after filtration
- Cannot diffuse back into circulation

Weak Acid: $HA <-> A^- + H^+$

Weak Base: BOH <-> B⁺ + OH⁻

Urine pH

- Urine pH affects drug excretion
- Weak acids: Alkalinize urine to excrete more drug
- Weak bases: Acidify urine to excrete more drug

Weak Acid: $HA <-> A^- + H^+$

Weak Base: BOH <-> B⁺ + OH⁻

Examples

- Weak acid drugs
 - Phenobarbital, aspirin
 - Sodium bicarbonate to alkalinize urine in overdose
- Weak base drugs
 - Amphetamines, quinidine, or phencyclidine
 - Ammonia chloride (NH₄Cl) to acidify urine in overdose
 - Historical: Efficacy not established, toxicity severe acidosis

Drug Metabolism

- Many, many liver reactions that metabolize drugs
- Liver "biotransforms" drug
- Usually converts lipophilic drugs to hydrophilic products
 - Creates water-soluble metabolites for excretion
- Reactions classified as Phase I or Phase II

Phase I Metabolism

- Reduction, oxidation, or hydrolysis reactions
- Often creates active metabolites
- Two key facts to know:
 - Phase I metabolism can slow in elderly patients
 - Phase I includes cytochrome P450 system

Cytochrome P450

- Intracellular enzymes
- Metabolize many drugs (Phase I)
- If inhibited \rightarrow drug levels rise
- If induced \rightarrow drug levels fall

Cytochrome P450

- Inhibitors are more dangerous
 - Can cause drug levels to rise
 - Cyclosporine, some macrolides, azole antifungals
- Luckily, many P450 metabolized drugs rarely used
 - Theophylline, Cisapride, Terfenadine
- Some clinically relevant possibilities
 - Some statins + Inhibitor \rightarrow Rhabdomyolysis
 - Warfarin

P450 Drugs

Some Examples

Inducers

- Chronic alcohol
- Rifampin
- Phenobarbital
- Carbamazepine
- Griseofulvin
- Phenytoin

Inhibitors

- Isoniazid
- Erythromycin
- Cimetidine
- Azoles
- Grapefruit juice
- Ritonavir (HIV)

Phase II Metabolism

- Conjugation reactions
 - Glucuronidation, acetylation, sulfation
- Makes very polar inactive metabolites

Slow Acetylators

- Genetically-mediated \downarrow hepatic N-acetyltransferase
- Acetylation is main route isoniazid (INH) metabolism
- Also important sulfasalazine (anti-inflammatory)
- Procainamide and hydralazine
 - Can cause drug-induced lupus
 - Both drugs metabolized by acetylation
 - More likely among slow acetylators

Pharmacokinetics

Jason Ryan, MD, MPH

Pharmacokinetics

- Absorption
- Distribution
- Metabolism
- Excretion
- All impact drug's ability to achieve desired result

Drug Administration

- Enteral
 - Uses the GI tract
 - Oral, sublingual, rectal
- Parenteral
 - Does not use GI tract
 - IV, IM, SQ
- Other
 - Inhalation, intranasal, intrathecal
 - Topical

Bioavailability (F)

- Fraction (%) of drug that reaches systemic circulation unchanged
- Suppose 100mg drug given orally
- 50mg absorbed unchanged
- Bioavailability = 50%

Bioavailability (F)

- Intravenous dosing
 - F = 100%
 - Entire dose available to body
- Oral dosing
 - F < 100%
 - Incomplete absorption
 - First pass metabolism

First Pass Metabolism

- Oral drugs absorbed \rightarrow liver
- Some drugs rapidly metabolized on 1st pass
- Decreases amount that reaches circulation
- Can be reduced in liver disease patients

Bioavailability (F)

Time

- Theoretical volume a drug occupies
- Determined by injecting known dose and measuring concentration

Vd = Total Amount In Body Plasma Concentration

$$Vd = \frac{10g}{0.5g/L} = 20L$$

- Useful for determining dosages
- Example:
 - Effective [drug]=10mg/L
 - Vd for drug = 10L
 - Dose = 10mg/L * 10L = 100mg

Fluid Compartments

Vd ↑ when drug distributes to more fluid compartments (blood, ECF, tissues)

- Drugs restricted to vascular compartment: \downarrow Vd
 - Large, charged molecules
 - Often protein bound
 - Warfarin: Vd = 9.8L
- Drugs that accumulate in tissues: 11Vd
 - Small, lipophilic molecules
 - Often uneven distribution in body
 - Chloroquine: Vd = 13000L

Protein Binding

- Many drugs bind to plasma proteins (usually albumin)
- This may hold them in the vascular space
- Lowers Vd

Hypoalbuminemia

- Liver disease
- Nephrotic syndrome
- Less plasma protein binding
- More unbound drug → moves to peripheral compartments
- 1Vd
- Required dose of drug may change

- Volume of blood "cleared" of drug
- Volume of blood that contained amount of drug
- Number in liters/min (volume flow)

$$C_x = \frac{\text{Excretion Rate}}{P_x}$$

- Mostly occurs via liver or kidneys
- Liver clearance
 - Biotransformation of drug to metabolites
 - Excretion of drug into bile
- Renal clearance
 - Excretion of drug into urine

- In liver or kidney disease clearance may fall
- Drug concentration may rise
- Toxicity may occur
- Dose may need to be decreased

- Can also calculate from Vd
- Need elimination constant (Ke)
- Implications:
 - Higher Vd, higher clearance
 - Supposed 10g/hour removed from body
 - Higher Vd \rightarrow Higher volume holding 10g \rightarrow Higher clearance

$$C_x = Vd * Ke$$

$$C_x = Vd * Ke$$

$$Ke = C_x Vd$$

_

Boards&Beyond.

Half-Life

- Time required to change amount of drug in the body by one-half
- Usually time for [drug] to fall 50%
- Depends on Vd and Clearance (CL)

$$t_{1/2} = 0.7 * Vd$$

CL

Half-life

No. Half Lives	% Remaining
0	100
1	50
2	25
3	12.5
4	6.25
5	3.12
6	1.56

Steady State

- Dose administered = amount drug eliminated
- Takes 4-5 half lives to reach steady state

Half-Lives

Calculating Doses

- Maintenance dose
 - Just enough drug to replace what was eliminated
- Loading dose
 - Given when time to steady state is very high
 - Get to steady state more quickly
 - When t1/2 is very high
- In kidney/liver disease, maintenance dose may fall
 - Less eliminated per unit time
 - Less needs to be replaced with each dose
- Loading dose will be unchanged

Maintenance Dose

Dose Rate = Elimination Rate = [Drug] * Clearance

Dose Rate = [5g/l] * 5L/min= 25 g/min

Maintenance Dose

 * If Bioavailability is <100%, need to increase dose to account for this

Dose Rate_{oral} =
$$\frac{\text{Target Dose}}{F}$$

Target Dose = 25g/min Bioavailability = 50% Dose Rate = 25/0.5 = 50g/min

Loading Dose

- Target concentration * Vd
- Suppose want 5g/l
- Vd = 10L
- Need 5 * 10 = 50grams loading dose
- Divide by F if bioavailability <100%

Steady State

- Dose administered = amount drug eliminated
- Takes 4-5 half lives to reach steady state

Key Points

- Volume Distribution = Amt injected / [Drug]
- Clearance = 0.7 * Vd / t12
- 4-5 half lives to get to steady state
- Maintenance dose = [Steady State] * CL / F
- Loading dose = [Steady State] * Vd / F

